

Is Now Part of

To learn more about ON Semiconductor, please visit our website at

www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any products nerving. Its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor products for any particular of use as a critical component in life support systems or any effect or in the further notice or syne as a critical component in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application fuerges untor designed, intended, or as egginant all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

April 2009

FIN1027 / FIN1027A — 3.3V LVDS, 2-Bit, High-Speed, Differential Driver

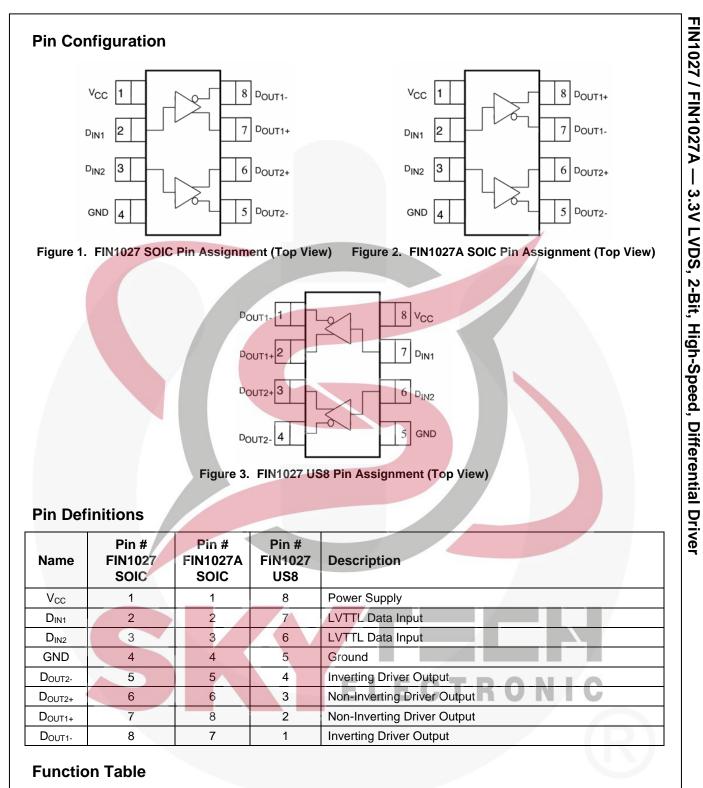
Description

Features

FAIRCHILD

- Greater than 600Mbs Data Rate
- 3V Power Supply Operation
- 5ns Maximum Differential Pulse Skew
- 1.5ns Maximum Propagation Delay
- Low Power Dissipation
- Power-Off Protection
- Meets or Exceeds the TIA/EIA-644 LVDS Standard
- Flow-through Pinout Simplifies PCB Layout

This dual driver is designed for high-speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signal levels to LVDS levels with a typical differential output swing of 350mV, which provides low EMI at ultra-low power dissipation, even at high frequencies. This device is ideal for high-speed transfer of clock or data.


The FIN1027 or FIN1027A can be paired with its companion receiver, the FIN1028, or with any other LVDS receiver.

Ordering Information

Part Number	Operating Temperature Range	Eco Status	Package	Packing Method
FIN1027M	-40 to +85°C	Green	8-Lead Small Outline Package (SOIC) JEDEC MS-012, 0.150 inch Narrow	Trays
FIN1027MX	-40 to +85°C	Green	8-Lead Small Outline Package (SOIC) JEDEC MS-012, 0.150 inch Narrow	Tape and Reel
FIN1027K8X	-40 to +85°C	RoHS	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	Tape and Reel
FIN1027AMX	-40 to +85°C	Green	8-Lead Small Outline Package (SOIC) JEDEC MS-012, 0.150 inch Narrow	Tape and Reel

Ø For Fairchild's definition of Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

www.fairchildsemi.com

Input	Outputs		
D _{IN}	D _{out+}	D _{OUT-}	
LOW	LOW	HIGH	
HIGH	HIGH	LOW	
OPEN	LOW	HIGH	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	4.6	V
D _{IN}	DC Input Voltage	-0.5	6.0	V
D _{OUT}	DC Output Voltage	-0.5	4.7	V
I _{OSD}	Driver Short-Circuit Current	Conti	Continuous	
T _{STG}	Storage Temperature Range	-65	+150	°C
TJ	Maximum Junction Temperature		+150	
TL	Lead Temperature, Soldering, 10 Seconds		+260	°C
ESD	Human Body Model, JESD22-A114		≥6500	V
E2D	Machine Model, JESD22-A115		≥400	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	3.0	3.6	V
V _{IN}	Input Voltage	0	V _{CC}	V
T _A	Operating Temperature	-40	+85	°C

© 2001 Fairchild Semiconductor Corporation FIN1027 / FIN1027A • Rev. 1.0.3 www.fairchildsemi.com

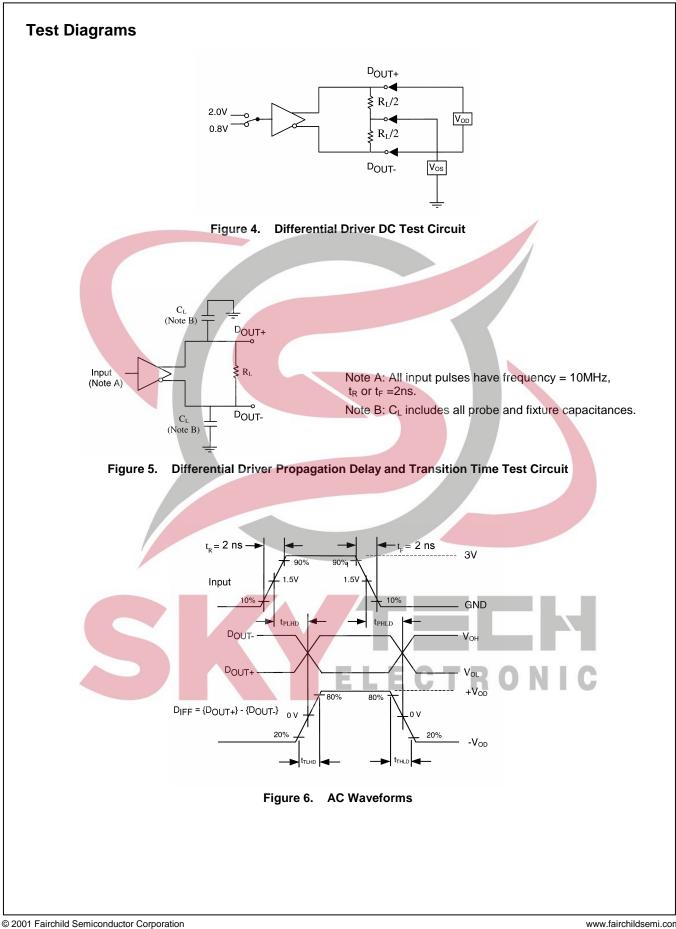
DC Electrical Characteristics

All typical values are at $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V. Over-supply voltage and operating temperature ranges, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{OD}	Output Differential Voltage		250	350	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH				25	mV
Vos	Offset Voltage	$R_L = 100\Omega$, Figure 4	1.125	1.250	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH				25	mV
I _{OFF}	Power-Off Output current	$V_{CC} = 0V$, $V_{OUT} = 0V$ or 3.6V			±20	μA
	Short-Circuit Output Current	$V_{OUT} = 0V$			-8	mA
l _{os}		$V_{OD} = 0V$			±8	
VIH	Input HIGH Voltage		2.0		Vcc	V
VIL	Input LOW Voltage		GND		0.8	V
l _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$			±20	μA
I _{I(OFF)}	Power-Off Input Current	$V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$			±20	μA
VIK	Input Clamp Voltage	I _{IK} = -18mA	-1.5			V
		No Load, $V_{IN} = 0V$ or V_{CC}			12.5	mA
I _{CC}	Power Supply Current	$R_L = 100\Omega$, $V_{IN} = 0V$ or V_{CC}			17.0	mA
CIN	Input Capacitance			4		pF
COUT	Output Capacitance			6		pF

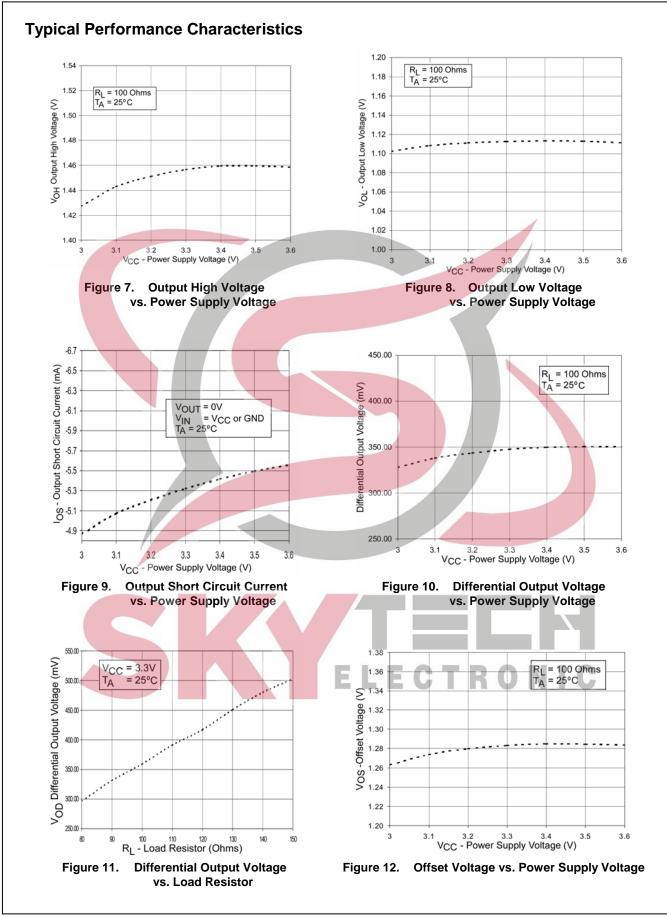
AC Electrical Characteristics

All typical values are at $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V. Over-supply voltage and operating temperature ranges, unless otherwise noted.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{PLHD}	Differential Propagation Delay, LOW-to-HIGH		0.5		1.5	ns
t _{PHLD}	Differential Propagation Delay, HIGH-to-LOW	ELEC	0.5		1.5	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)	$R_L = 100\Omega,$ $C_L = 10pF,$	0.4		1.0	ns
t _{тньd}	Differential Output Fall Time (80% to 20%)	Figure 5, Figure 6	0.4		1.0	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}				0.5	ns
t _{SK(LH)} , t _{SK(HL)}	Channel-to-Channel Skew ⁽¹⁾				0.3	ns
t _{SK(PP)}	Part-to-Part Skew ⁽²⁾				1.0	ns

Notes:

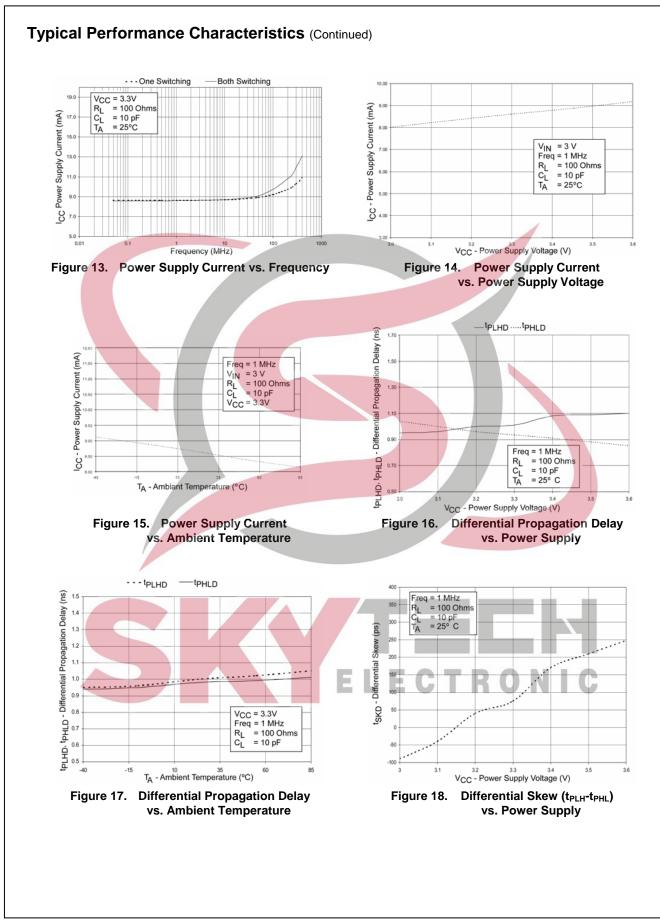
1. t_{SK(LH)}, t_{SK(HL)} is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.


 t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

www.fairchildsemi.com

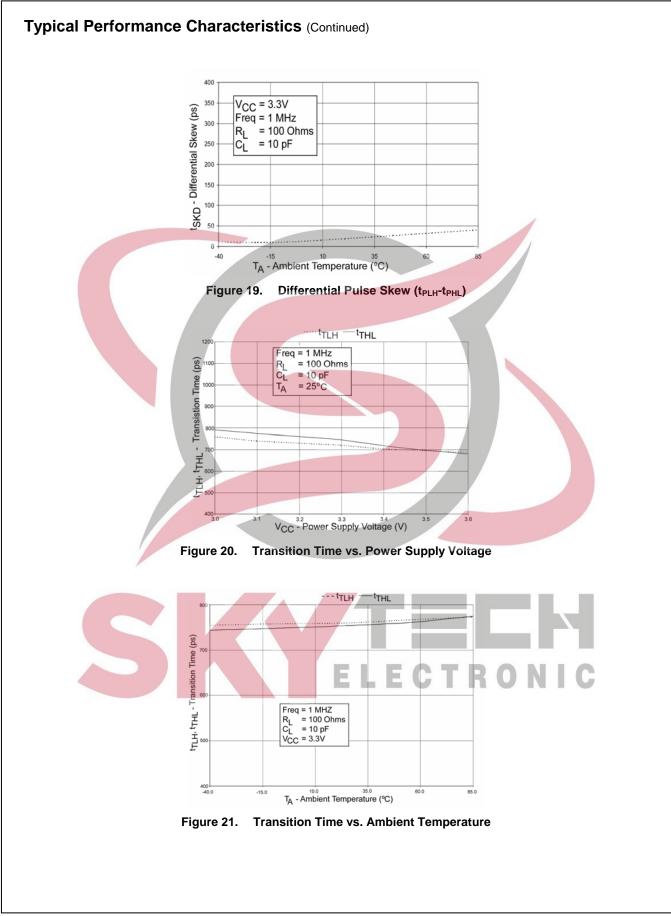
5

FIN1027 / FIN1027A — 3.3V LVDS, 2-Bit, High-Speed, Differential Driver

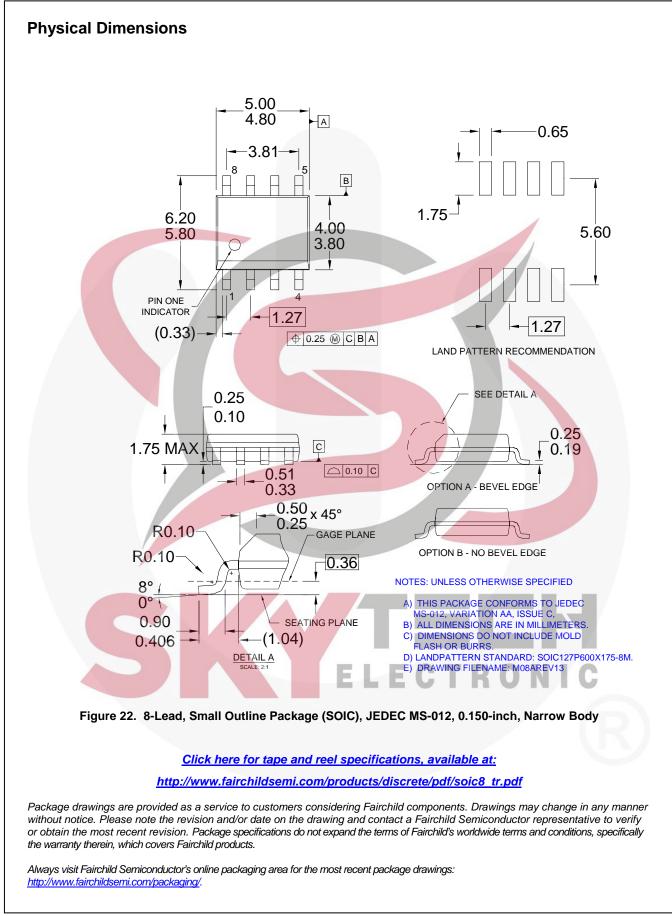


© 2001 Fairchild Semiconductor Corporation FIN1027 / FIN1027A • Rev. 1.0.3

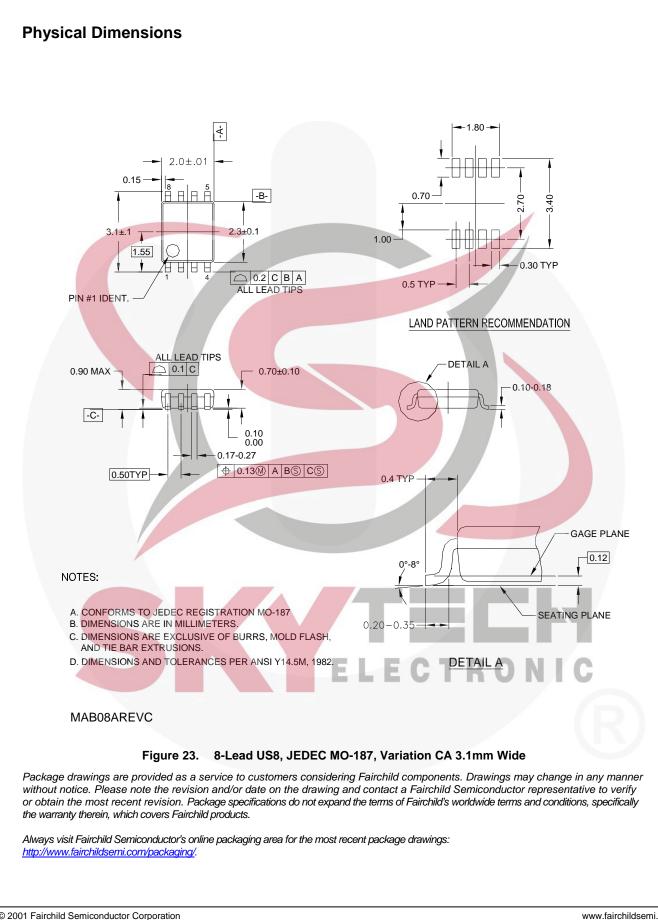
www.fairchildsemi.com


Published by WWW.SKYTECH.ir

6


7

© 2001 Fairchild Semiconductor Corporation FIN1027 / FIN1027A • Rev. 1.0.3 www.fairchildsemi.com


8

© 2001 Fairchild Semiconductor Corporation FIN1027 / FIN1027A • Rev. 1.0.3

© 2001 Fairchild Semiconductor Corporation FIN1027 / FIN1027A • Rev. 1.0.3

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distri

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

